pt.tumba.ngram.svm
Class SVMParameter

java.lang.Object
  extended by pt.tumba.ngram.svm.SVMParameter

public class SVMParameter
extends java.lang.Object

Constants and Parameters used used in the SVM package.

Author:
Bruno Martins

Field Summary
 double C
          The cost parameter, for C_SVC, EPSILON_SVR and NU_SVR.
static int C_SVC
          SVM formulation type type C-Support Vector classification
 double cacheSize
          The Kernel cache size, in MB
 double coef0
          Parameter needed for kernels of type polynomial and sigmoid (default: 0)
 double degree
          The degree of the polynomial (for polynomial kernel type)
 double eps
          The stopping criteria
static int EPSILON_SVR
          SVM formulation type type Epsilon-Support Vector regresion
 double gamma
          The gamma parameter.
 int kernelType
          Parameter specifying the Kernel type
static int LINEAR
          Linear Kernel type
 int nrWeight
          The label weights, for C_SVC
 double nu
          The nu parameter, for NU_SVC, ONE_CLASS, and NU_SVR.
static int NU_SVC
          SVM formulation type type Nu-Support Vector classification
static int NU_SVR
          SVM formulation type type Nu-Support Vector regression
static int ONE_CLASS
          SVM formulation type type distribution estimation
 double p
          The p parameter, for EPSILON_SVR
static int POLY
          Polynomial kernel type
 boolean probability
          Boolean flag indicating if probability estimates should be done
static int RBF
          Gaussian Radial Basis Functio kernel type
 boolean shrinking
          Boolean flag indicating the use of the shrinking heuristics
static int SIGMOID
          Sigmoid kernel type
 int svmType
          Parameter specifying the SVM type
 double[] weight
          The label weights, for C_SVC
 int[] weightLabel
          The label weights, for C_SVC
 
Constructor Summary
SVMParameter()
           
 
Method Summary
 java.lang.Object clone()
          Clone this object (replicate the parameters)
 
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

C_SVC

public static final int C_SVC
SVM formulation type type C-Support Vector classification

See Also:
Constant Field Values

NU_SVC

public static final int NU_SVC
SVM formulation type type Nu-Support Vector classification

See Also:
Constant Field Values

ONE_CLASS

public static final int ONE_CLASS
SVM formulation type type distribution estimation

See Also:
Constant Field Values

EPSILON_SVR

public static final int EPSILON_SVR
SVM formulation type type Epsilon-Support Vector regresion

See Also:
Constant Field Values

NU_SVR

public static final int NU_SVR
SVM formulation type type Nu-Support Vector regression

See Also:
Constant Field Values

LINEAR

public static final int LINEAR
Linear Kernel type

See Also:
Constant Field Values

POLY

public static final int POLY
Polynomial kernel type

See Also:
Constant Field Values

RBF

public static final int RBF
Gaussian Radial Basis Functio kernel type

See Also:
Constant Field Values

SIGMOID

public static final int SIGMOID
Sigmoid kernel type

See Also:
Constant Field Values

svmType

public int svmType
Parameter specifying the SVM type


kernelType

public int kernelType
Parameter specifying the Kernel type


degree

public double degree
The degree of the polynomial (for polynomial kernel type)


gamma

public double gamma
The gamma parameter. For the polynomial kernel, gamma serves as inner product coefficient in the polynomial. In the case of the RBF kernel, gamma determines the RBF width. In the sigmoid kernel, gamma serves as as inner product coefficient in the hiperbolic tangent function (default: 1/(data dimension))


coef0

public double coef0
Parameter needed for kernels of type polynomial and sigmoid (default: 0)


cacheSize

public double cacheSize
The Kernel cache size, in MB


eps

public double eps
The stopping criteria


C

public double C
The cost parameter, for C_SVC, EPSILON_SVR and NU_SVR.


nrWeight

public int nrWeight
The label weights, for C_SVC


weightLabel

public int[] weightLabel
The label weights, for C_SVC


weight

public double[] weight
The label weights, for C_SVC


nu

public double nu
The nu parameter, for NU_SVC, ONE_CLASS, and NU_SVR. It controls the number of support vectors and errors.


p

public double p
The p parameter, for EPSILON_SVR


shrinking

public boolean shrinking
Boolean flag indicating the use of the shrinking heuristics


probability

public boolean probability
Boolean flag indicating if probability estimates should be done

Constructor Detail

SVMParameter

public SVMParameter()
Method Detail

clone

public java.lang.Object clone()
Clone this object (replicate the parameters)

Overrides:
clone in class java.lang.Object
Returns:
A clone of these parameters.