Uses of Class
pt.tumba.ngram.bayes.DiscreteFunction

Packages that use DiscreteFunction
pt.tumba.ngram.bayes Implementation of Bayesian Network Classifiers that can be used to categorize text files using N-Grams as features. 
 

Uses of DiscreteFunction in pt.tumba.ngram.bayes
 

Subclasses of DiscreteFunction in pt.tumba.ngram.bayes
 class ConstantDensityBoundedSet
           
 class ConstantDensityRatioSet
           
 class EpsilonContaminatedSet
           
(package private)  class FinitelyGeneratedSet
           
 class ProbabilityFunction
          ***************************************************************
 class QBProbabilityFunction
           
 class TotalVariationSet
           
 class TwoMonotoneCapacity
           
 class VertexSet
           
 

Fields in pt.tumba.ngram.bayes declared as DiscreteFunction
(package private)  DiscreteFunction Bucket.backward_pointers
           
(package private)  DiscreteFunction Bucket.cluster
           
protected  DiscreteFunction Expectation.current_function
           
private  DiscreteFunction[] Bucket.ordered_dfs
           
(package private)  DiscreteFunction Bucket.separator
           
private  DiscreteFunction ConstantDensityRatioSet.temporary_discrete_function
           
private  DiscreteFunction TwoMonotoneCapacity.temporary_discrete_function
           
(package private)  DiscreteFunction BucketTree.unnormalized_result
           
protected  DiscreteFunction BayesNet.utility_function
           
 

Methods in pt.tumba.ngram.bayes that return DiscreteFunction
private  DiscreteFunction Bucket.build_new_function(boolean is_bucket_variable_included)
           
(package private)  DiscreteFunction Bucket.combine()
           
private  DiscreteFunction Expectation.construct_values(ProbabilityVariable pv, int moment_order)
           
 DiscreteFunction DiscreteVariable.get_numeric_values()
          Produce an array of numeric values for the values of a variable.
 DiscreteFunction BucketTree.get_unnormalized_result()
          Get the unnormalized_result for the BucketTree.
 DiscreteFunction BayesNet.get_utility_function()
          Get the utility function.
 DiscreteFunction DiscreteFunction.multiply(DiscreteVariable[] dvs, DiscreteFunction mult)
          Multiply two DiscreteFunction objects.
 DiscreteFunction DiscreteFunction.sum_out(DiscreteVariable[] dvs, boolean[] markers)
          Sum out some variables in the function.
 

Methods in pt.tumba.ngram.bayes with parameters of type DiscreteFunction
private  void GeneralizedChoquetIntegral.bound_negative(TwoMonotoneCapacity tmc, DiscreteFunction df, java.util.Vector sorted_values, double[] lps, double[] ups)
          Obtain the lower and upper probability for the event { df(x) < sorted_value[i] }
private  void GeneralizedChoquetIntegral.bound_positive(TwoMonotoneCapacity tmc, DiscreteFunction df, java.util.Vector sorted_values, double[] lps, double[] ups)
          Obtain the lower and upper probability for the event { df(x) > sorted_value[i] }
private  void Bucket.build_new_variables(DiscreteFunction new_df, int[] joined_indexes, boolean is_bucket_variable_included, int n)
           
private  void Bucket.create_backward_pointers(DiscreteFunction new_df)
           
protected  void Expectation.do_expectation_from_inference(DiscreteFunction df)
           
protected  void QuasiBayesExpectation.do_expectation_from_inference(DiscreteFunction df)
           
private  void QuasiBayesExpectation.expectation_with_local_neighborhoods(DiscreteFunction df)
           
private  void QuasiBayesExpectation.expectation_without_local_neighborhoods(DiscreteFunction df)
           
 void Expectation.expectation(DiscreteFunction df)
          Do the Expectation, assuming the input DiscreteFunction is a function only of the queried variable.
 void Expectation.expectation(DiscreteFunction df, java.lang.String queried_variable_name)
          Do the Expectation, assuming the input DiscreteFunction is a function only of the queried variable.
 void Expectation.expectation(DiscreteFunction df, java.lang.String[] order)
          Do the Expectation given order, assuming the input DiscreteFunction is a function only of the queried variable.
 double ProbabilityFunction.expected_value(DiscreteFunction df)
          Obtain expected value of a DiscreteFunction The current implementation is very limited; it assumes that both the ProbabilityFunction object and the DiscreteFunctions object has a single variable, and the variable must be the same for both functions.
 double[] ConstantDensityRatioSet.expected_values(DiscreteFunction df)
          Perform calculation of expected value for density ratio.
 double[] EpsilonContaminatedSet.expected_values(DiscreteFunction df)
          Perform calculation of expected value.
 double[] TwoMonotoneCapacity.expected_values(DiscreteFunction df)
           
private  void BucketTree.insert(DiscreteFunction df)
           
private  void BucketTree.insert(DiscreteFunction df, boolean was_first_variable_cancelled_by_evidence)
           
private  void Bucket.max_out(DiscreteFunction new_df)
           
 DiscreteFunction DiscreteFunction.multiply(DiscreteVariable[] dvs, DiscreteFunction mult)
          Multiply two DiscreteFunction objects.
 double ProbabilityFunction.posterior_expected_value(DiscreteFunction df)
          Obtain posterior expected value of a DiscreteFunction This assumes that the probability values are unnormalized, equal to p(x, e) where e is the evidence.
 double[] ConstantDensityRatioSet.posterior_expected_values(DiscreteFunction df)
          Perform calculation of posterior expected value.
 double[] EpsilonContaminatedSet.posterior_expected_values(DiscreteFunction df)
          Perform calculation of posterior expected value.
 double[] TwoMonotoneCapacity.posterior_expected_values(DiscreteFunction df)
           
(package private)  boolean DiscreteFunction.same_variables(DiscreteFunction df)
           
private  java.util.Vector GeneralizedChoquetIntegral.sort_negative(DiscreteFunction df)
          Collect the negative values in df and sort them in decreasing order (first value is assumed zero).
private  java.util.Vector GeneralizedChoquetIntegral.sort_positive(DiscreteFunction df)
          Collect the positive values in df and sort them in increasing order (first value is assumed zero).
private  void Bucket.sum_out(DiscreteFunction new_df)
           
 double ProbabilityFunction.variance(DiscreteFunction df)
          Calculate the variance of a DiscreteFunction.
 

Constructors in pt.tumba.ngram.bayes with parameters of type DiscreteFunction
FinitelyGeneratedSet(DiscreteFunction df, double[] new_values)
          Constructor for FinitelyGeneratedSet.
FinitelyGeneratedSet(DiscreteFunction df, double[] new_values, double[] new_lp, double[] new_up)
          Constructor for FinitelyGeneratedSet.
GeneralizedChoquetIntegral(TwoMonotoneCapacity tmc, DiscreteFunction df)
          Calculate the lower and upper Choquet integrals using Walley's generalization, for a total variation neighborhood.
ProbabilityFunction(DiscreteFunction df, BayesNet b_n)
          Constructor for ProbabilityFunction.
ProbabilityFunction(DiscreteFunction df, double[] new_values)
          Constructor for ProbabilityFunction.
QBProbabilityFunction(DiscreteFunction df, double[] new_values, double[] new_lp, double[] new_up)
          Constructor for QBProbabilityFunction.