|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use DiscreteFunction | |
---|---|
pt.tumba.ngram.bayes | Implementation of Bayesian Network Classifiers that can be used to categorize text files using N-Grams as features. |
Uses of DiscreteFunction in pt.tumba.ngram.bayes |
---|
Subclasses of DiscreteFunction in pt.tumba.ngram.bayes | |
---|---|
class |
ConstantDensityBoundedSet
|
class |
ConstantDensityRatioSet
|
class |
EpsilonContaminatedSet
|
(package private) class |
FinitelyGeneratedSet
|
class |
ProbabilityFunction
*************************************************************** |
class |
QBProbabilityFunction
|
class |
TotalVariationSet
|
class |
TwoMonotoneCapacity
|
class |
VertexSet
|
Fields in pt.tumba.ngram.bayes declared as DiscreteFunction | |
---|---|
(package private) DiscreteFunction |
Bucket.backward_pointers
|
(package private) DiscreteFunction |
Bucket.cluster
|
protected DiscreteFunction |
Expectation.current_function
|
private DiscreteFunction[] |
Bucket.ordered_dfs
|
(package private) DiscreteFunction |
Bucket.separator
|
private DiscreteFunction |
ConstantDensityRatioSet.temporary_discrete_function
|
private DiscreteFunction |
TwoMonotoneCapacity.temporary_discrete_function
|
(package private) DiscreteFunction |
BucketTree.unnormalized_result
|
protected DiscreteFunction |
BayesNet.utility_function
|
Methods in pt.tumba.ngram.bayes that return DiscreteFunction | |
---|---|
private DiscreteFunction |
Bucket.build_new_function(boolean is_bucket_variable_included)
|
(package private) DiscreteFunction |
Bucket.combine()
|
private DiscreteFunction |
Expectation.construct_values(ProbabilityVariable pv,
int moment_order)
|
DiscreteFunction |
DiscreteVariable.get_numeric_values()
Produce an array of numeric values for the values of a variable. |
DiscreteFunction |
BucketTree.get_unnormalized_result()
Get the unnormalized_result for the BucketTree. |
DiscreteFunction |
BayesNet.get_utility_function()
Get the utility function. |
DiscreteFunction |
DiscreteFunction.multiply(DiscreteVariable[] dvs,
DiscreteFunction mult)
Multiply two DiscreteFunction objects. |
DiscreteFunction |
DiscreteFunction.sum_out(DiscreteVariable[] dvs,
boolean[] markers)
Sum out some variables in the function. |
Methods in pt.tumba.ngram.bayes with parameters of type DiscreteFunction | |
---|---|
private void |
GeneralizedChoquetIntegral.bound_negative(TwoMonotoneCapacity tmc,
DiscreteFunction df,
java.util.Vector sorted_values,
double[] lps,
double[] ups)
Obtain the lower and upper probability for the event { df(x) < sorted_value[i] } |
private void |
GeneralizedChoquetIntegral.bound_positive(TwoMonotoneCapacity tmc,
DiscreteFunction df,
java.util.Vector sorted_values,
double[] lps,
double[] ups)
Obtain the lower and upper probability for the event { df(x) > sorted_value[i] } |
private void |
Bucket.build_new_variables(DiscreteFunction new_df,
int[] joined_indexes,
boolean is_bucket_variable_included,
int n)
|
private void |
Bucket.create_backward_pointers(DiscreteFunction new_df)
|
protected void |
Expectation.do_expectation_from_inference(DiscreteFunction df)
|
protected void |
QuasiBayesExpectation.do_expectation_from_inference(DiscreteFunction df)
|
private void |
QuasiBayesExpectation.expectation_with_local_neighborhoods(DiscreteFunction df)
|
private void |
QuasiBayesExpectation.expectation_without_local_neighborhoods(DiscreteFunction df)
|
void |
Expectation.expectation(DiscreteFunction df)
Do the Expectation, assuming the input DiscreteFunction is a function only of the queried variable. |
void |
Expectation.expectation(DiscreteFunction df,
java.lang.String queried_variable_name)
Do the Expectation, assuming the input DiscreteFunction is a function only of the queried variable. |
void |
Expectation.expectation(DiscreteFunction df,
java.lang.String[] order)
Do the Expectation given order, assuming the input DiscreteFunction is a function only of the queried variable. |
double |
ProbabilityFunction.expected_value(DiscreteFunction df)
Obtain expected value of a DiscreteFunction The current implementation is very limited; it assumes that both the ProbabilityFunction object and the DiscreteFunctions object has a single variable, and the variable must be the same for both functions. |
double[] |
ConstantDensityRatioSet.expected_values(DiscreteFunction df)
Perform calculation of expected value for density ratio. |
double[] |
EpsilonContaminatedSet.expected_values(DiscreteFunction df)
Perform calculation of expected value. |
double[] |
TwoMonotoneCapacity.expected_values(DiscreteFunction df)
|
private void |
BucketTree.insert(DiscreteFunction df)
|
private void |
BucketTree.insert(DiscreteFunction df,
boolean was_first_variable_cancelled_by_evidence)
|
private void |
Bucket.max_out(DiscreteFunction new_df)
|
DiscreteFunction |
DiscreteFunction.multiply(DiscreteVariable[] dvs,
DiscreteFunction mult)
Multiply two DiscreteFunction objects. |
double |
ProbabilityFunction.posterior_expected_value(DiscreteFunction df)
Obtain posterior expected value of a DiscreteFunction This assumes that the probability values are unnormalized, equal to p(x, e) where e is the evidence. |
double[] |
ConstantDensityRatioSet.posterior_expected_values(DiscreteFunction df)
Perform calculation of posterior expected value. |
double[] |
EpsilonContaminatedSet.posterior_expected_values(DiscreteFunction df)
Perform calculation of posterior expected value. |
double[] |
TwoMonotoneCapacity.posterior_expected_values(DiscreteFunction df)
|
(package private) boolean |
DiscreteFunction.same_variables(DiscreteFunction df)
|
private java.util.Vector |
GeneralizedChoquetIntegral.sort_negative(DiscreteFunction df)
Collect the negative values in df and sort them in decreasing order (first value is assumed zero). |
private java.util.Vector |
GeneralizedChoquetIntegral.sort_positive(DiscreteFunction df)
Collect the positive values in df and sort them in increasing order (first value is assumed zero). |
private void |
Bucket.sum_out(DiscreteFunction new_df)
|
double |
ProbabilityFunction.variance(DiscreteFunction df)
Calculate the variance of a DiscreteFunction. |
Constructors in pt.tumba.ngram.bayes with parameters of type DiscreteFunction | |
---|---|
FinitelyGeneratedSet(DiscreteFunction df,
double[] new_values)
Constructor for FinitelyGeneratedSet. |
|
FinitelyGeneratedSet(DiscreteFunction df,
double[] new_values,
double[] new_lp,
double[] new_up)
Constructor for FinitelyGeneratedSet. |
|
GeneralizedChoquetIntegral(TwoMonotoneCapacity tmc,
DiscreteFunction df)
Calculate the lower and upper Choquet integrals using Walley's generalization, for a total variation neighborhood. |
|
ProbabilityFunction(DiscreteFunction df,
BayesNet b_n)
Constructor for ProbabilityFunction. |
|
ProbabilityFunction(DiscreteFunction df,
double[] new_values)
Constructor for ProbabilityFunction. |
|
QBProbabilityFunction(DiscreteFunction df,
double[] new_values,
double[] new_lp,
double[] new_up)
Constructor for QBProbabilityFunction. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |