|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use SVMNode | |
|---|---|
| pt.tumba.ngram.svm | Implementation of Support Vector Machines classification and regression that can be used to categorize text files using N-Grams as features. |
| Uses of SVMNode in pt.tumba.ngram.svm |
|---|
| Fields in pt.tumba.ngram.svm declared as SVMNode | |
|---|---|
(package private) SVMNode[][] |
SVMModel.supportVectors
The Support Vectors. |
SVMNode[][] |
SVMProblem.x
The training vectors. |
private SVMNode[][] |
Kernel.x
|
| Methods in pt.tumba.ngram.svm with parameters of type SVMNode | |
|---|---|
(package private) static double |
Kernel.dot(SVMNode[] x,
SVMNode[] y)
Return the dot product of two vectors. |
(package private) static double |
Kernel.dot(SVMNode[] x,
SVMNode[] y)
Return the dot product of two vectors. |
(package private) static double |
Kernel.kernelFunction(SVMNode[] x,
SVMNode[] y,
SVMParameter param)
Returns the value of a single kernel evaluation. |
(package private) static double |
Kernel.kernelFunction(SVMNode[] x,
SVMNode[] y,
SVMParameter param)
Returns the value of a single kernel evaluation. |
static double |
SVM.svmPredict(SVMModel model,
SVMNode[] x)
|
static double |
SVM.svmPredictProbability(SVMModel model,
SVMNode[] x,
double[] prob_estimates)
|
static void |
SVM.svmPredictValues(SVMModel model,
SVMNode[] x,
double[] dec_values)
|
| Constructors in pt.tumba.ngram.svm with parameters of type SVMNode | |
|---|---|
Kernel(int l,
SVMNode[][] x_,
SVMParameter param)
Kernel constructor, prepares to calculate the l*l kernel matrix. |
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||