A B C D E F G H I J K L M N O P Q R S T U V W X Y _

N

NAME - Variable in class pt.tumba.ngram.bayes.XMLInterchangeFormat
 
NATURE - Variable in class pt.tumba.ngram.bayes.XMLInterchangeFormat
 
NATURE_DEFINE - Static variable in class pt.tumba.ngram.bayes.XMLInterchangeFormat
 
NETWORK - Variable in class pt.tumba.ngram.bayes.BayesInterchangeFormat
 
NETWORK - Variable in class pt.tumba.ngram.bayes.XMLInterchangeFormat
 
NGram - Class in pt.tumba.ngram
This class models a concrete and simple N-Gram.
NGram() - Constructor for class pt.tumba.ngram.NGram
Constructor for the NGram object.
NGram(byte[], int, int, double) - Constructor for class pt.tumba.ngram.NGram
Constructor for the NGram object
NGram(byte[], int, int) - Constructor for class pt.tumba.ngram.NGram
Constructor for the NGram object
NGram(NGram) - Constructor for class pt.tumba.ngram.NGram
Constructor for the NGram object which copies another N-gram.
NGram(String) - Constructor for class pt.tumba.ngram.NGram
Constructor for the NGram object
NGramCathegorizer - Class in pt.tumba.ngram
NGramCathegorizer implements the classification technique described in Cavnar & Trenkle, "N-Gram-Based Text Categorization".
NGramCathegorizer() - Constructor for class pt.tumba.ngram.NGramCathegorizer
Construct an uninitialized cathegorizer that uses Lin's similarity measure.
NGramCathegorizer(int) - Constructor for class pt.tumba.ngram.NGramCathegorizer
Construct an uninitialized cathegorizer that uses a specific similarity measure.
NGramCathegorizer(String) - Constructor for class pt.tumba.ngram.NGramCathegorizer
Construct an cathegorizer that uses Lin's similarity measure from a directory with model profiles.
NGramCathegorizer(String, int) - Constructor for class pt.tumba.ngram.NGramCathegorizer
Construct an cathegorizer that uses a specific similarity measure from a directory with model profiles.
NGramCathegorizer(String[]) - Constructor for class pt.tumba.ngram.NGramCathegorizer
Construct an Cathegorizer that uses Lin's similarity measure from an array of resource file names.
NGramCathegorizer(String[], int) - Constructor for class pt.tumba.ngram.NGramCathegorizer
Construct an Cathegorizer that uses a specific similarity measure from an array of resource file names.
NGramConstants - Class in pt.tumba.ngram
Contant values used in the TCatNG package.
NGramConstants() - Constructor for class pt.tumba.ngram.NGramConstants
 
NGramFilter - Static variable in class pt.tumba.ngram.NGramCathegorizer
A FilenameFilter for filtering directory listings, recognizing filenames for N-gram profiles.
NGramFilter - Static variable in class pt.tumba.ngram.blr.BayesianLogReg
A FilenameFilter for filtering directory listings, recognizing filenames for class profiles.
NON_NEGATIVE_NUMBER - Variable in class pt.tumba.ngram.bayes.BayesInterchangeFormat
 
NON_NEGATIVE_NUMBER - Variable in class pt.tumba.ngram.bayes.XMLInterchangeFormat
 
NO_CREDAL_SET - Static variable in class pt.tumba.ngram.bayes.InferenceGraph
 
NO_CREDAL_SET - Static variable in class pt.tumba.ngram.bayes.QuasiBayesNet
 
NUM_BYTES - Static variable in class pt.tumba.ngram.compression.AdaptiveUnigramModel
Total number of bytes.
NUM_BYTES - Static variable in class pt.tumba.ngram.compression.UniformModel
Total number of bytes.
NUM_OUTCOMES - Static variable in class pt.tumba.ngram.compression.UniformModel
Index in the count array for the cumulative total of all outcomes.
NU_SVC - Static variable in class pt.tumba.ngram.svm.SVMParameter
SVM formulation type type Nu-Support Vector classification
NU_SVR - Static variable in class pt.tumba.ngram.svm.SVMParameter
SVM formulation type type Nu-Support Vector regression
NetworkContent() - Method in class pt.tumba.ngram.bayes.BayesInterchangeFormat
 
NetworkDeclaration() - Method in class pt.tumba.ngram.bayes.BayesInterchangeFormat
 
NetworkDeclaration() - Method in class pt.tumba.ngram.bayes.XMLInterchangeFormat
 
name - Variable in class pt.tumba.ngram.DataProfile
The name for the Profile (usually equal to the filename from where it was read).
name - Variable in class pt.tumba.ngram.bayes.BayesNet
 
name - Variable in class pt.tumba.ngram.bayes.DiscreteVariable
 
name - Variable in class pt.tumba.ngram.bayes.IFBayesNet
 
name - Variable in class pt.tumba.ngram.bayes.IFProbabilityVariable
 
names - Variable in class pt.tumba.ngram.blr.BayesianLogReg
 
names - Variable in class pt.tumba.ngram.svm.SVMCategorizer
 
newNGram(byte[]) - Static method in class pt.tumba.ngram.NGram
QuasiConstructor.
newNGram(byte[], int) - Static method in class pt.tumba.ngram.NGram
QuasiConstructor.
newNGram(String) - Static method in class pt.tumba.ngram.NGram
QuasiConstructor.
newNGram(byte[], int, int) - Static method in class pt.tumba.ngram.NGram
QuasiConstructor.
newNGram(byte[], int, int, double) - Static method in class pt.tumba.ngram.NGram
QuasiConstructor.
newNGram(Map, byte[], int, int) - Static method in class pt.tumba.ngram.ProfileReader
Create a new N-gram from an array of bytes.
newToken(int) - Static method in class pt.tumba.ngram.bayes.Token
Returns a new Token object, by default.
next - Variable in class pt.tumba.ngram.bayes.JJXMLBIFv03Calls
 
next - Variable in class pt.tumba.ngram.bayes.Token
A reference to the next regular (non-special) token from the input stream.
next - Variable in class pt.tumba.ngram.svm.Cache.CacheNode
 
nextByteRange(Random, int, int) - Static method in class pt.tumba.ngram.compression.Test
Generates the next random byte between the specified low and high bytes inclusive, using the specified randomizer.
nextCharBuf - Variable in class pt.tumba.ngram.bayes.ASCII_UCodeESC_CharStream
 
nextCharInd - Variable in class pt.tumba.ngram.bayes.ASCII_UCodeESC_CharStream
 
nextFreeIndex() - Method in class pt.tumba.ngram.compression.ByteBuffer
Index in the buffer for next element.
nextRandomAlphaNum(byte[], Random) - Static method in class pt.tumba.ngram.compression.Test
Fills the specified byte array with random alphanumeric characters generated by the specified randomizer.
nextRandomAlphaNum(Random) - Static method in class pt.tumba.ngram.compression.Test
Returns next random alphabetic or numeric byte as determined by the specified randomizer.
nextToken() - Method in class pt.tumba.ngram.bayes.BayesInterchangeFormat
 
nextToken() - Method in class pt.tumba.ngram.bayes.XMLInterchangeFormat
 
next_buffer - Variable in class pt.tumba.ngram.svm.SVRQ
 
ngrams() - Method in class pt.tumba.ngram.DataProfile
Returns an Iterator over the N-grams in this profile.
ngrams() - Method in class pt.tumba.ngram.EntryProfile
Returns an Iterator over the N-grams in this profile.
ngrams() - Method in interface pt.tumba.ngram.Profile
Return an Iterator over all contained N-grams.
nodes - Variable in class pt.tumba.ngram.bayes.InferenceGraph
 
nodes - Variable in class pt.tumba.ngram.svm.Cache
The Nodes in the cache.
non_conditioning_variables - Variable in class pt.tumba.ngram.bayes.Bucket
 
normalize() - Method in class pt.tumba.ngram.bayes.DiscreteFunction
Normalize a function (in-place).
normalize_first() - Method in class pt.tumba.ngram.bayes.DiscreteFunction
Normalize a function (in-place) assuming that it is a conditional distribution for the first variable
normalizedCompressionDistance(byte[], byte[], byte[]) - Static method in class pt.tumba.ngram.compression.CompressionCategorizer
Calculates the normalized compression distance
normalizedCompressionDistance(String, String) - Method in class pt.tumba.ngram.compression.CompressionCategorizer
Calculates the normalized compression distance between two Strings.
normalizedCompressionDistance(File, File) - Method in class pt.tumba.ngram.compression.CompressionCategorizer
Calculates the normalized compression distance between two Files.
normalizedCompressionDistance(byte[], byte[]) - Method in class pt.tumba.ngram.compression.CompressionCategorizer
Calculates the compression dissimilarity between two byte arrays.
nrClasses - Variable in class pt.tumba.ngram.svm.SVMModel
The number of classes.
nrFold - Variable in class pt.tumba.ngram.svm.SVMCategorizer
 
nrWeight - Variable in class pt.tumba.ngram.svm.SVMParameter
The label weights, for C_SVC
nu - Variable in class pt.tumba.ngram.svm.SVMParameter
The nu parameter, for NU_SVC, ONE_CLASS, and NU_SVR.
numSupportVectors - Variable in class pt.tumba.ngram.svm.SVMModel
Number of Support Vectors for each class (for classification only).
number_extreme_distributions() - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Number of distributions that are represented by a node.
number_nodes() - Method in class pt.tumba.ngram.bayes.InferenceGraph
Get the number of variables in the network
number_probability_functions() - Method in class pt.tumba.ngram.bayes.BayesNet
Get the number of distributions in the network.
number_values() - Method in class pt.tumba.ngram.bayes.DiscreteFunction
Return the number of values in the current DiscreteFunction.
number_values() - Method in class pt.tumba.ngram.bayes.DiscreteVariable
Return the number of values in the current DiscreteVariable.
number_variables() - Method in class pt.tumba.ngram.bayes.BayesNet
Get the number of variables in the network.
number_variables() - Method in class pt.tumba.ngram.bayes.DiscreteFunction
Return the number of DiscreteVariable objects in the current DiscreteFunction.

A B C D E F G H I J K L M N O P Q R S T U V W X Y _