A B C D E F G H I J K L M N O P Q R S T U V W X Y _

S

SECOND_MOMENT - Static variable in class pt.tumba.ngram.bayes.Expectation
 
SENSITIVITY_ANALYSIS - Static variable in class pt.tumba.ngram.bayes.InferenceGraph
 
SIGMOID - Static variable in class pt.tumba.ngram.svm.SVMParameter
Sigmoid kernel type
SIMILARITYJIANG - Static variable in class pt.tumba.ngram.NGramConstants
Use the similarity metric proposed by Jiand & Conranth in "Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy".
SIMILARITYLIN - Static variable in class pt.tumba.ngram.NGramConstants
Use the similarity metric proposed by Lin in "An information-theoretic definition of similarity".
SIMILARITYOUTOFPLACE - Static variable in class pt.tumba.ngram.NGramConstants
Use the similarity metric proposed by Cavnar & Trenkle.
SINGLE_LINE_COMMENT - Variable in class pt.tumba.ngram.bayes.BayesInterchangeFormat
 
SKIPABLE - Static variable in class pt.tumba.ngram.NGramConstants
Bytes skipable while building the proviles.
SMOOTHING - Static variable in class pt.tumba.ngram.NGramConstants
Use Good-Turing smoothing on the NGram occurence frequency.
SOT - Variable in class pt.tumba.ngram.bayes.XMLInterchangeFormat
 
STATIC_LEXER_ERROR - Static variable in error pt.tumba.ngram.bayes.TokenMgrError
An attempt wass made to create a second instance of a static token manager.
STRING - Variable in class pt.tumba.ngram.bayes.BayesInterchangeFormat
 
SUM_OUT - Static variable in class pt.tumba.ngram.bayes.BucketTree
 
SVCQ - Class in pt.tumba.ngram.svm
Inner class representing a Kernel matrix for Support Vector classification.
SVCQ(SVMProblem, SVMParameter, byte[]) - Constructor for class pt.tumba.ngram.svm.SVCQ
 
SVM - Class in pt.tumba.ngram.svm
Construct and solve various formulations of the support vector machine (SVM) problem.
SVM() - Constructor for class pt.tumba.ngram.svm.SVM
 
SVM.decisionFunction - Class in pt.tumba.ngram.svm
Inner class modeling the data for the SVM decision function, used for classifying points with respect to the hyperplane.
SVM.decisionFunction() - Constructor for class pt.tumba.ngram.svm.SVM.decisionFunction
 
SVMCategorizer - Class in pt.tumba.ngram.svm
Simple, easy-to-use, and efficient software for SVM classification and regression, based on the LIBSVM implementation of Chin-Chung Chang and Chin-Jen Lin.
SVMCategorizer() - Constructor for class pt.tumba.ngram.svm.SVMCategorizer
Construct an uninitialized Cathegorizer.
SVMCategorizer(String) - Constructor for class pt.tumba.ngram.svm.SVMCategorizer
Construct an Cathegorizer from a whole Directory of resources.
SVMCategorizer(String[]) - Constructor for class pt.tumba.ngram.svm.SVMCategorizer
Construct an Cathegorizer from a List of resource file names.
SVMModel - Class in pt.tumba.ngram.svm
SVMModel encondes a classification model, describing both the model parameters and the Support Vectors.
SVMModel() - Constructor for class pt.tumba.ngram.svm.SVMModel
 
SVMNode - Class in pt.tumba.ngram.svm
SVMNode is used to model dimentions in vectors.
SVMNode() - Constructor for class pt.tumba.ngram.svm.SVMNode
 
SVMParameter - Class in pt.tumba.ngram.svm
Constants and Parameters used used in the SVM package.
SVMParameter() - Constructor for class pt.tumba.ngram.svm.SVMParameter
 
SVMProblem - Class in pt.tumba.ngram.svm
Class to model an SVM Problem, containing both the training vectors and the class (value) associated with each vector.
SVMProblem() - Constructor for class pt.tumba.ngram.svm.SVMProblem
 
SVRQ - Class in pt.tumba.ngram.svm
Inner class representing a Kernel matrix for Support Vector regression.
SVRQ(SVMProblem, SVMParameter) - Constructor for class pt.tumba.ngram.svm.SVRQ
 
SaveBugs - Class in pt.tumba.ngram.bayes
 
SaveBugs(BayesNet) - Constructor for class pt.tumba.ngram.bayes.SaveBugs
Default constructor for a SaveBUGS object.
Solve(int, Kernel, double[], byte[], double[], double, double, double, Solver.SolutionInfo, boolean) - Method in class pt.tumba.ngram.svm.Solver
 
Solve(int, Kernel, double[], byte[], double[], double, double, double, Solver.SolutionInfo, boolean) - Method in class pt.tumba.ngram.svm.SolverNU
 
Solver - Class in pt.tumba.ngram.svm
Generalized SMO+SVMlight algorithm Solves: min 0.5(\alpha^T Q \alpha) + b^T \alpha y^T \alpha = \delta y_i = +1 or -1 0 <= alpha_i <= Cp for y_i = 1 0 <= alpha_i <= Cn for y_i = -1 Given: Q, b, y, Cp, Cn, and an initial feasible point \alpha l is the size of vectors and matrices eps is the stopping criterion solution will be put in \alpha, objective value will be put in obj
Solver() - Constructor for class pt.tumba.ngram.svm.Solver
 
Solver.SolutionInfo - Class in pt.tumba.ngram.svm
 
Solver.SolutionInfo() - Constructor for class pt.tumba.ngram.svm.Solver.SolutionInfo
 
SolverNU - Class in pt.tumba.ngram.svm
Solver for nu-svm classification and regression additional constraint: e^T \alpha = constant
SolverNU() - Constructor for class pt.tumba.ngram.svm.SolverNU
 
SwitchTo(int) - Method in class pt.tumba.ngram.bayes.BayesInterchangeFormat
 
SwitchTo(int) - Method in class pt.tumba.ngram.bayes.XMLInterchangeFormat
 
s_variables - Variable in class pt.tumba.ngram.bayes.IFProbabilityFunction
 
same_variables(DiscreteFunction) - Method in class pt.tumba.ngram.bayes.DiscreteFunction
 
save(PrintStream) - Method in class pt.tumba.ngram.bayes.SaveBugs
Save a BayesNet in a stream in the BUGS format.
save_bif(PrintStream) - Method in class pt.tumba.ngram.bayes.BayesNet
Save a BayesNet object in a stream, in the BIF InterchangeFormat.
save_bif(PrintStream) - Method in class pt.tumba.ngram.bayes.InferenceGraph
Save the Bayesian network into a PrintStream in the BIF InterchangeFormat.
save_bugs(PrintStream) - Method in class pt.tumba.ngram.bayes.BayesNet
Save a BayesNet object into a stream, in the BUGS format.
save_bugs(PrintStream) - Method in class pt.tumba.ngram.bayes.InferenceGraph
Save the Bayesian networks in BUGS format into a PrintStream.
save_data(PrintStream) - Method in class pt.tumba.ngram.bayes.SaveBugs
The numeric values for the distributions, saved in the Splus format understood by BUGS.
save_embayes(PrintStream) - Method in class pt.tumba.ngram.bayes.BayesNet
Save a BayesNet object in a stream for the EBayes engine.
save_model(PrintStream) - Method in class pt.tumba.ngram.bayes.SaveBugs
Save the name of the network in BUGS format.
save_structure(PrintStream) - Method in class pt.tumba.ngram.bayes.SaveBugs
The parenthood relationships in the network.
save_variables(PrintStream) - Method in class pt.tumba.ngram.bayes.SaveBugs
Declare all the variables used in the network.
save_xml(PrintStream) - Method in class pt.tumba.ngram.bayes.BayesNet
Save a BayesNet object in a stream, in the XMLBIF format version 0.3 (most recent version).
save_xml(PrintStream) - Method in class pt.tumba.ngram.bayes.InferenceGraph
Save the Bayesian network into a PrintStream in the XML InterchangeFormat.
save_xml(PrintStream) - Method in class pt.tumba.ngram.bayes.ProbabilityFunction
Save the contents of a ProbabilityFunction object into a PrintStream.
save_xml(PrintStream) - Method in class pt.tumba.ngram.bayes.ProbabilityVariable
Save the contents of a ProbabilityVariable object into a PrintStream.
save_xml_0_2(PrintStream) - Method in class pt.tumba.ngram.bayes.BayesNet
Save a BayesNet object in a stream, in the XMLBIF format version 0.2.
save_xml_0_3(PrintStream) - Method in class pt.tumba.ngram.bayes.ProbabilityFunction
Save the contents of a ProbabilityFunction object into a PrintStream in the XMLBIF v0.3 format.
save_xml_0_3(PrintStream) - Method in class pt.tumba.ngram.bayes.ProbabilityVariable
Save the contents of a ProbabilityVariable object into a PrintStream using the XMLBIF v0.3 format.
selectWorkingSet(int[]) - Method in class pt.tumba.ngram.svm.Solver
 
selectWorkingSet(int[]) - Method in class pt.tumba.ngram.svm.SolverNU
 
separation(int, int) - Method in class pt.tumba.ngram.bayes.DSeparation
 
separation_relations(int, int) - Method in class pt.tumba.ngram.bayes.DSeparation
 
separator - Variable in class pt.tumba.ngram.bayes.Bucket
 
set_conditional_index(int) - Method in class pt.tumba.ngram.bayes.IFProbabilityFunction
 
set_defaults(Vector) - Method in class pt.tumba.ngram.bayes.IFProbabilityFunction
 
set_entries(Vector) - Method in class pt.tumba.ngram.bayes.IFProbabilityFunction
 
set_explanation(boolean) - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Set the explanatory status of the node.
set_explanation_value(int) - Method in class pt.tumba.ngram.bayes.ProbabilityVariable
Set the variable as explanatory with a given value.
set_extreme_point(int, double[]) - Method in class pt.tumba.ngram.bayes.VertexSet
Set an extreme point of the credal set.
set_function_properties(Vector) - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Set the function properties.
set_function_value(String[][], double, int) - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Set a single value of the probability function in the node given a list of pairs (Variable Value).
set_function_values(double[]) - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Set an array containing probability values; if credal set, insert the array in the first extreme point.
set_function_values(int, double[]) - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Set an array containing an extreme point of the credal set.
set_global_neighborhood(int) - Method in class pt.tumba.ngram.bayes.InferenceGraph
Set the global neighborhood type.
set_global_neighborhood_parameter(double) - Method in class pt.tumba.ngram.bayes.InferenceGraph
Set the parameter for the global neighborhood modeled by the network.
set_global_neighborhood_parameter(double) - Method in class pt.tumba.ngram.bayes.QuasiBayesNet
Set the parameter for the global neighborhood modeled by the network.
set_global_neighborhood_type(int) - Method in class pt.tumba.ngram.bayes.QuasiBayesNet
Set the type of global neighborhood.
set_index(int) - Method in class pt.tumba.ngram.bayes.ProbabilityVariable
Set the index of the variable.
set_invalid_index() - Method in class pt.tumba.ngram.bayes.ProbabilityVariable
Set the index of the current ProbabilityVariable as invalid (variable is not observed).
set_invalid_observed_index() - Method in class pt.tumba.ngram.bayes.ProbabilityVariable
Set the ProbabilityVariable as not observed..
set_local_credal_set(int) - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Make sure the node represents a VertexSet a given number of extreme distributions.
set_local_credal_set() - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Make sure the node represents a VertexSet.
set_local_credal_set(int) - Method in class pt.tumba.ngram.bayes.VertexSet
Set the number of extreme distributions in the credal set.
set_name(String) - Method in class pt.tumba.ngram.bayes.BayesNet
Set the name of the network.
set_name(String) - Method in class pt.tumba.ngram.bayes.DiscreteVariable
Set the name of the current DiscreteVariable.
set_name(String) - Method in class pt.tumba.ngram.bayes.IFProbabilityVariable
 
set_name(String) - Method in class pt.tumba.ngram.bayes.InferenceGraph
Set the name of the network.
set_name(String) - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Set the name of the variable.
set_network_properties(Vector) - Method in class pt.tumba.ngram.bayes.InferenceGraph
Set the properties of the network.
set_no_local_credal_set() - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Make sure the node represents a single distribution.
set_observation_value(String) - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Set the observation for the node.
set_observed_value(String) - Method in class pt.tumba.ngram.bayes.ProbabilityVariable
Set a value of the current ProbabilityVariable as observed.
set_pos(InferenceGraphNode, Point) - Method in class pt.tumba.ngram.bayes.InferenceGraph
Set a value for the position of the node.
set_probability_function(int, ProbabilityVariable[], double[], Vector) - Method in class pt.tumba.ngram.bayes.BayesNet
Set a probability function given its constituents.
set_probability_function(int, ProbabilityFunction) - Method in class pt.tumba.ngram.bayes.BayesNet
Set a probability variable given its index.
set_probability_functions(ProbabilityFunction[]) - Method in class pt.tumba.ngram.bayes.BayesNet
Set the vector of probability functions.
set_probability_variable(int, String, String[], Vector) - Method in class pt.tumba.ngram.bayes.BayesNet
Set a probability variable given its constituents.
set_probability_variable(int, ProbabilityVariable) - Method in class pt.tumba.ngram.bayes.BayesNet
Set a probability variable given its index.
set_probability_variables(ProbabilityVariable[]) - Method in class pt.tumba.ngram.bayes.BayesNet
Set the vector of probability variables.
set_properties(Vector) - Method in class pt.tumba.ngram.bayes.BayesNet
Set the properties.
set_properties(Vector) - Method in class pt.tumba.ngram.bayes.IFProbabilityFunction
 
set_properties(Vector) - Method in class pt.tumba.ngram.bayes.IFProbabilityVariable
 
set_properties(Vector) - Method in class pt.tumba.ngram.bayes.ProbabilityFunction
Set the properties.
set_properties(Vector) - Method in class pt.tumba.ngram.bayes.ProbabilityVariable
Set the properties.
set_stream(InputStream) - Method in class pt.tumba.ngram.bayes.InterchangeFormat
 
set_stream(Reader) - Method in class pt.tumba.ngram.bayes.InterchangeFormat
 
set_tables(Vector) - Method in class pt.tumba.ngram.bayes.IFProbabilityFunction
 
set_type(int) - Method in class pt.tumba.ngram.bayes.ProbabilityVariable
Set the type of the current ProbabilityVariable.
set_value(int, double) - Method in class pt.tumba.ngram.bayes.DiscreteFunction
Set a value in the current DiscreteFunction given its position in the array of values.
set_value(String[][], double) - Method in class pt.tumba.ngram.bayes.ProbabilityFunction
Set a single value of the probability function.
set_value(String[][], double, int) - Method in class pt.tumba.ngram.bayes.VertexSet
Set a single value of the probability function.
set_values(double[]) - Method in class pt.tumba.ngram.bayes.DiscreteFunction
Set the values in the DiscreteFunction.
set_values(String[]) - Method in class pt.tumba.ngram.bayes.DiscreteVariable
Set the values of the current DiscreteVariable.
set_values(String[]) - Method in class pt.tumba.ngram.bayes.IFProbabilityVariable
 
set_variable(int, DiscreteVariable) - Method in class pt.tumba.ngram.bayes.DiscreteFunction
Set a DiscreteVariable in the current DiscreteFunction given its position in the array of values.
set_variable_properties(Vector) - Method in class pt.tumba.ngram.bayes.InferenceGraphNode
Set the variable properties.
set_variables(String[]) - Method in class pt.tumba.ngram.bayes.IFProbabilityFunction
 
shrinking - Variable in class pt.tumba.ngram.svm.SVMParameter
Boolean flag indicating the use of the shrinking heuristics
si - Variable in class pt.tumba.ngram.svm.SolverNU
 
sigmoidPredict(double, double, double) - Static method in class pt.tumba.ngram.svm.SVM
 
sigmoidTrain(int, double[], double[], double[]) - Static method in class pt.tumba.ngram.svm.SVM
Platt's binary SVM Probablistic Output: an improvement from Lin et al.
sign - Variable in class pt.tumba.ngram.svm.SVRQ
 
similarityJiang(Profile, Profile) - Static method in class pt.tumba.ngram.NGramCathegorizer
Calculate "the distance" between two profiles, using Jiang's & Conranth similarity measure, as proposed in "Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy".
similarityLin(Profile, Profile) - Static method in class pt.tumba.ngram.NGramCathegorizer
Calculate "the distance" between two profiles, using Lin's similarity measure as proposed in "An information-theoretic definition of similarity".
similarityMetric - Variable in class pt.tumba.ngram.NGramCathegorizer
The metric used to measure the distance between the profiles.
size - Variable in class pt.tumba.ngram.NGram
Size of this N-gram.
size() - Method in class pt.tumba.ngram.compression.ByteSet
Returns number of elements in this set.
size - Variable in class pt.tumba.ngram.svm.Cache
The cache size limit in bytes.
skip(long) - Method in class pt.tumba.ngram.compression.ArithCodeInputStream
Skips the given number of bytes from the input.
solveCSVC(SVMProblem, SVMParameter, double[], Solver.SolutionInfo, double, double) - Static method in class pt.tumba.ngram.svm.SVM
Solve the C-Support Vector classification problem.
solveEpsilonSVR(SVMProblem, SVMParameter, double[], Solver.SolutionInfo) - Static method in class pt.tumba.ngram.svm.SVM
Solve the Epsilon-Support Vector Regression Problem
solveNUSVC(SVMProblem, SVMParameter, double[], Solver.SolutionInfo) - Static method in class pt.tumba.ngram.svm.SVM
Solve the Nu-Support Vector Classification problem.
solveNUSVR(SVMProblem, SVMParameter, double[], Solver.SolutionInfo) - Static method in class pt.tumba.ngram.svm.SVM
Solve the Nu-Support Vector Regression Problem
solveOneClass(SVMProblem, SVMParameter, double[], Solver.SolutionInfo) - Static method in class pt.tumba.ngram.svm.SVM
Solve the SVM Distribution Estimation Problem.
sort_negative(DiscreteFunction) - Method in class pt.tumba.ngram.bayes.GeneralizedChoquetIntegral
Collect the negative values in df and sort them in decreasing order (first value is assumed zero).
sort_positive(DiscreteFunction) - Method in class pt.tumba.ngram.bayes.GeneralizedChoquetIntegral
Collect the positive values in df and sort them in increasing order (first value is assumed zero).
sortedGrams - Variable in class pt.tumba.ngram.blr.BayesianLogReg
 
sortedGrams - Variable in class pt.tumba.ngram.svm.SVMCategorizer
 
specialConstructor - Variable in exception pt.tumba.ngram.bayes.ParseException
This variable determines which constructor was used to create this object and thereby affects the semantics of the "getMessage" method (see below).
specialToken - Variable in class pt.tumba.ngram.bayes.Token
This field is used to access special tokens that occur prior to this token, but after the immediately preceding regular (non-special) token.
speedString(int, long) - Static method in class pt.tumba.ngram.compression.Test
Returns a string representation of the speed of compression indicated by the specified number of original bytes and time in milliseconds.
staticFlag - Static variable in class pt.tumba.ngram.bayes.ASCII_CharStream
 
staticFlag - Static variable in class pt.tumba.ngram.bayes.ASCII_UCodeESC_CharStream
 
status - Variable in class pt.tumba.ngram.bayes.Bracketing
 
sum_out(DiscreteFunction) - Method in class pt.tumba.ngram.bayes.Bucket
 
sum_out(DiscreteVariable[], boolean[]) - Method in class pt.tumba.ngram.bayes.DiscreteFunction
Sum out some variables in the function.
supportVectors - Variable in class pt.tumba.ngram.svm.SVMModel
The Support Vectors.
supportVectorsCoef - Variable in class pt.tumba.ngram.svm.SVMModel
The coefficients for Support Vectors in decision functions.
svmBinarySVCProbability(SVMProblem, SVMParameter, double, double, double[]) - Static method in class pt.tumba.ngram.svm.SVM
Cross-validation decision values for probability estimates.
svmCheckParameter(SVMProblem, SVMParameter) - Static method in class pt.tumba.ngram.svm.SVM
Check the parameters given to an SVM problem.
svmCheckProbabilityModel(SVMModel) - Static method in class pt.tumba.ngram.svm.SVM
 
svmCrossValidation(SVMProblem, SVMParameter, int, double[]) - Static method in class pt.tumba.ngram.svm.SVM
Perform cross validation
svmGetLabels(SVMModel, int[]) - Static method in class pt.tumba.ngram.svm.SVM
 
svmGetSVRProbability(SVMModel) - Static method in class pt.tumba.ngram.svm.SVM
 
svmLoadModel(String) - Static method in class pt.tumba.ngram.svm.SVM
Loads a trained SVM model from disk.
svmPredict(SVMModel, SVMNode[]) - Static method in class pt.tumba.ngram.svm.SVM
 
svmPredictProbability(SVMModel, SVMNode[], double[]) - Static method in class pt.tumba.ngram.svm.SVM
 
svmPredictValues(SVMModel, SVMNode[], double[]) - Static method in class pt.tumba.ngram.svm.SVM
 
svmSVRProbability(SVMProblem, SVMParameter) - Static method in class pt.tumba.ngram.svm.SVM
Return parameter of a Laplace distribution
svmSaveModel(String, SVMModel) - Static method in class pt.tumba.ngram.svm.SVM
Outputs a trained model to disk, for use in future classification tasks.
svmTrain(SVMProblem, SVMParameter) - Static method in class pt.tumba.ngram.svm.SVM
Train the SVM.
svmTrainOne(SVMProblem, SVMParameter, double, double) - Static method in class pt.tumba.ngram.svm.SVM
Computation for one step of the training procedure.
svmType - Variable in class pt.tumba.ngram.svm.SVMParameter
Parameter specifying the SVM type
svmTypeTable - Static variable in class pt.tumba.ngram.svm.SVM
Table with all the SVM problem formulation names.
swapIndex(int, int) - Method in class pt.tumba.ngram.svm.Cache
Swap two nodes in the cache.
swapIndex(int, int) - Method in class pt.tumba.ngram.svm.Kernel
Swap two nodes of the Kernel matrix.
swapIndex(int, int) - Method in class pt.tumba.ngram.svm.ONECLASSQ
 
swapIndex(int, int) - Method in class pt.tumba.ngram.svm.SVCQ
 
swapIndex(int, int) - Method in class pt.tumba.ngram.svm.SVRQ
 
swapIndex(int, int) - Method in class pt.tumba.ngram.svm.Solver
 

A B C D E F G H I J K L M N O P Q R S T U V W X Y _